Society for the Teaching of Psychology

Division 2 of the American Psychological Association

E-xcellence in Teaching Essay: Using media in the classroom: A cautionary tale and some encouraging findings

03 Apr 2017 9:00 PM | Anonymous

Submitted by William S. Altman and Lyra Stein, Editors, E-xcellence in Teaching Essays ___________________________________________________________________________

Using media in the classroom: A cautionary tale and some encouraging findings

Lynne N. Kennette
Durham College


Instructors should use caution when implementing new methods of teaching or assessments: just because students like it, doesn’t mean their learning necessarily benefits. This was recently revealed to me in one of my classes when I tried a new activity. However, as I discovered through student comments, there is a silver lining (read on!)


One of the key skills that instructors in psychology try to develop in their students is the identification of  independent variables (IV) and dependent variables (DV), which form the basis of research design and analysis. The very foundation of the scientific method includes identifying changes in one variable and how it relates to  another variable. I wondered whether students would show a performance advantage (or any preference for) using media clips over written scenarios used for identifying IVs and DVs in experiments. So, I presented students with video clips from episodes of the television series MythBusters (Discovery Channel), audio clips from the National Public Radio’s Radiolab series, and my traditional written experiment scenarios.

Burkley and Burkley (2009) reported the benefits of using MythBusters clips to illustrate experimental designs. Students enjoyed the use of these clips in class, and performed better on MythBusters-related exam questions (compared to control questions). I suspected that students would prefer the video and audio scenarios for their entertainment value, but wondered whether their performance would actually benefit. Previous research suggested that students might both prefer and benefit from multimedia formats because it would stimulate interest and thus retention (Nowaczyk, Santos, & Patton, 1998). Media may also be more engaging than a written description, and engaging content leads to better learning of information (Tobias, 1994), and as we know, students put more effort into tasks they find interesting (Renninger, 1992).

However, it is also possible that the additional information provided by audio and video clips could distract students from the relevant information required to complete the task of identifying IVs and DVs (Walker & Bourne, 1961). This distracting information may come from the irrelevant “story-telling” details required to make these media commercially appealing (especially in the case of MythBusters). Additionally, because the learner cannot as easily control the stream of information (i.e., the speed at which information is delivered), students may experience a cost when presented with media compared to the traditional written format.


In two sections of my advanced cognitive psychology laboratory course (and following a brief review lecture on the topic of IVs and DVs), students were presented with traditional written scenarios, video clips, and audio clips and had to identify IVs and DVs. Students were assessed multiple times: immediately following the IV/DV review lecture (Time 1), during the second to last week of class (Time 2), and on the very last day of class (Time 3; here, I presented previously-encountered scenarios to measure retention, however this timepoint resulted in ceiling effects and was, therefore, difficult to analyze). At the end of the class, I also asked students (anonymously) some qualitative questions to obtain their perceptions of the three question types (e.g., which of the three were perceived easier).

Results and Discussion

After adjusting for final course grade, it is reassuring to have found that students improved over the course of the semester (F(2, 252) = 50.87, p < .001, hp2 = .288). Student performance on the three formats also differed (F(2, 252) = 4.01, p = .019, hp2 = .031), whereby students answered the traditional written scenarios more accurately than Radiolab questions (Mwritten = 78%, MRadiolab =68%, p = .005), but performance on the written scenarios did not differ from MythBusters questions (p = .128). What is perhaps even more interesting is that students perceived all three to be of similar difficulty, but indicated a preference for the MythBusters clips over the Radiolab audio clips. In addition, many students provided unsolicited feedback about how much “fun” the video and audio clips were and that these allowed them to finally “get” IV manipulation and DV measurement.

So, does showing students video and audio clips actually benefit learning or performance on assessments? My experience with this activity is particularly interesting because it taught me that using media or multimedia for classroom assessment may not necessarily lead to better understanding, even though students expressed a preference for these formats. Student preference for these formats does, however, suggest that instructors can use multimedia as a valuable tool because they increase student engagement with course material.


Some of the factors that instructors should consider when contemplating the use of multimedia for teaching and assessment include:

            Familiarity: the written format is a common way to expose students to IV and DV identification, which they may have encountered in previous courses. It is also the most common assessment method (tests and assignments), and therefore students are familiar with this format from high school. If planning to use multimedia for assessments, students should be given ample time to practice assessments using those less familiar formats.

Superfluous information: Both types of media clips contained additional details that were not directly relevant to the experiment. The presence of these extraneous details could distract students (especially those not sufficiently proficient in experimental design and unable to suppress this irrelevant information). Walker and Bourne (1961) found a linear decline in performance on a problem-solving task with each added piece of irrelevant information (also see Mayer, Heiser, & Loan, 2001, for a more recent investigation).

Entertainment: Students’ previous experience with MythBusters, Radiolab, or both (or perhaps television and radio more generally) as entertainment may result in difficulty focusing on the relevant experimental features of the clips (i.e., IVs and DVs), leading to declines in performance than with the written experimental scenarios,

Concluding remarks

            Instructors should use caution when implementing new technologies and new teaching strategies. As my recent experience has demonstrated, just because they like it, doesn’t mean they necessarily learn, perform, or retain it better. Similarly, these new techniques or formats (although interesting for students) may not be appropriate to use during assessments. However, it is encouraging to know that they can lead to increased student engagement (e.g., MythBusters) which can lead to increased learning while in class! Because student engagement is so important, instructors should use many tools to encourage student learning in their discipline, while keeping in mind the considerations outlined above.



Burkley, E., & Burkley, M. (2009). Mythbusters: A tool for teaching research methods in psychology. Teaching of Psychology, 36(3), 179–184. doi:10.1080/00986280902739586

Mayer, R. E., Heiser, J., & Loan, S. (2001). Cognitive constraints on multimedia learning: When presenting more material results in less understanding. Journal of

Educational Psychology, 93(1), 187–198. doi:10.1037/0022-0663.93.1.187

Nowaczyk, R. H., Santos, L. T., & Patton, C. (1998). Student perception of multimedia in the undergraduate classroom. International Journal of Instructional Media, 25(4), 367–382.

Renninger, K. A. (1992). Individual interest and development: Implications for theory and practice. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and development (pp. 361–398). Hillsdale, NJ: Erlbaum.

Tobias, S. (1994). Interest, prior knowledge and learning. Review of Educational Research, 64(1), 37–54. doi:10.3102/00346543064001037

Walker, C. M., & Bourne, L. E. (1961). The identification of concepts as a function of amounts of relevant and irrelevant information. The American Journal of Psychology, 74(3), 410–417. doi:10.2307/1419747

Author bio

Lynne N. Kennette, Ph.D. is a Professor of psychology and program coordinator for General Arts and Sciences programs at Durham College in Oshawa, Ontario (Canada). She is a graduate of Wayne State University (Detroit, Michigan, M.A. and Ph.D.) and the University of Windsor (Windsor, Ontario, B.A.). She teaches primarily general education courses in introductory psychology and her research focuses on the SoTL as well as how the mind processes languages. This research was conducted at Wayne State University.

Powered by Wild Apricot Membership Software